★灌浆料的安全性
采用无毒无挥发配方,对环境和人体友好,但应避免与皮肤长期接触,使用时应佩带必要防护并保持环境通风,皮肤沾染应及时清洗,如有误食口服,请立刻饮水催吐并延医**。
CGM-3
**细加固型 **细骨料,适用于灌浆层厚度5mm<δ<<地基对墙有效预应力精度不够:有效预应力偏小,预应力度不足,结构过早出现裂缝,下挠**限。有效预应力偏大,可能导致预应力筋安全储备不足,结构过大变形或裂纹,甚至脆性破坏。体的阻力系数C,增加,外加剂应保证较低的水灰比及在粘钢加固钢筋混凝土梁斜截面抗剪承载力计算分析一文中应用关键控制铰的变角桁架模型,前提假设是钢板和混凝土粘结层足够可靠,在结构破坏之前不会发生粘结层破坏,解决了RC梁的承载力与钢板厚度及宽度有关,而粘钢面积4不能反映实际情况的问题。良好的流动性、较小泌水率及体积稳定性,不得含有害物质及对预应力钢束有腐蚀的物质(如氯离子)。对于普通靠近墙体上部混凝网土收缩值明显较墙体中部和底部混凝土收缩值小,墙体靠近*部位的混凝土收缩变形与参考墙体的收缩变形几乎一样。同一标高处龙(R1和R4;R2和R5;R3和R6)的墙体混凝土收缩变形几乎一致,水平方向约筑束(如墙体两边的柱)对混凝土收缩变形的影响较小,可以忽略。压浆其用量由试验室确定,在现场拌浆时加入并按照生产厂家的建议使用,但不得**过水泥用量的5%。对于特殊压浆采用拌制好的材料(由生产厂家提供)。应力增加;墙体的高度增加,应力降低。另外,较大应力不仅与H/L有关,而且与墙体长度有关。长度增加,应力增加,但不是线形关系,在龙较短的范围内,长度对应力影响较大,**过一定长度后,影响变微在新建结构不断涌现的同时,对现有结构的维护和补强加固也引起了工程界的广泛关注。建筑物都有一定的基准使用期,我国一般的房屋建筑取为50年,桥梁取为100年(公路桥涵设计通用规范JTGD602004)。而*后建造的大量建筑都已经服役接近50年,同时,有很多因素会缩短现有建筑结构的使用寿命,其中包括:物理老化、化由于旧建筑物的工程事故不断发生,各经济发达国家逐新把建设的重点转移到l日建筑物的维修、改造和加固方面。英国1978年用于投资改造的费用是1965年的3.76倍,1980年旧建筑物维修改造工程占英国建筑工程总量的三分之二;瑞典1983年用于维修改造的投资占建筑业总投资的50%。学腐蚀、使用荷载的增大和设计标准的提高等等,致使许多房屋和桥梁结构都已不能满足现代生活的需要。目前我国土木建筑行业已经进入了新建与加固改造并举的阶段。,并趋近一常数,长度无论怎样增加,应力不变。因此,伸缩缝作为混凝土控制裂缝的主筑要措施之一,只在较短的间距范围内削减温度收缩应力起作用,**过一定长度,即应力腐蚀的特征是形成腐蚀-机械裂缝,这种裂缝不仅可以沿着晶界发展,而且也可穿过晶粒。由于裂缝向金属内部发展,使金属结构的机械强度大大降低。产生应力腐蚀的条件主要有:存在一定的拉应力,此拉应力可能是冷加工、焊接或机械束缚引起的残余应力,也可能是在使用条件下外加的。在大多数产生应力腐蚀的系统中存在一个临界应力值,当所受应力低于此临界应力值时,一般不产生应力腐蚀。大体积混凝土结构施工期间,外界气温的变化对大体积混凝土开裂有重大影响。混凝土的内部温度是浇筑温度(既混凝土的入模温度,它是混凝土水化热温升的基础,可以预见,混凝土的入模温度越高,它的热峰值也必然越高。工程实践中在高温季节浇筑大体积常采用骨料预冷,加冰详和混凝土是脆性材料,抗拉强度只有抗压强度的十分之一左右;拉伸变形也很小,短期极限拉伸变形只有(0.6~1.0)×104相当于温度降低6~10℃的变形;长期加载时的极限拉伸变形也只有(1.2~2.0)×104。大体积混凝土结构断面尺寸比较大,混凝土浇筑后,由于水泥水化热,内部温度急剧上升,此时弹性模量很小,徐变很大,升温引起的应力不大。但在日后温度逐渐降低时,弹性模量较大,徐变较小,在一定约束条件下会产生相当大的拉应力。大体积混凝土通常是暴露在外面的,表面与空气或水接触,一年四季中气温和水温的变化在大体积混凝土结构中会引起相当大的拉应力。等措施来降低浇筑温度,控制混凝土较高温,原因在此。引起应力腐蚀的临界应力一般低于材料的屈服极限。预应力钢筋的张拉实践证明,环氧树脂植筋胶应用可以起到较好的粘结作用,但在应用中也存在较多不足,其弱点是由机体材料性能决定的,在短期内难以解决或经济代价过大。具体表现在:a、**质类粘结材料价格昂贵。b、**质类粘结材料施工难度较大。c、**质类粘结材料多为有毒国内外实践证明:大体积混凝土释放的水化热会产生较大的温度变化和收缩作用,由此产生温度应力和收缩应力两部分,它们是导致混凝土产生裂缝的主要因素。从而影响基础的整体性、防水性,构成对结构物的隐患,须认真对特。工程实用抗裂计算可技下列步骤进行,在步骤中,将降温温差看成由水化热温差和收缩当量温差两部分组成,它们都可分解匀降温温差及非均匀降温温差,前者产生外的束应力,是形成贯穿性裂缝主要因素,后者产生白多有东应力,是形成表面裂缝主要因素。或微毒材料。而水泥基无机粘结材料的弹性模量和线膨胀系数与混凝土的材料相近,能保证两种材料之间协同工作,且其耐火性、耐高温性能比较好,对环境及工作人员的危害小。鉴于上述原因,许多*认为,用水泥基材料补修加固水泥基材具有**的相容性,可以起到良好效果。植筋粘结材料由**质类向无机质类过渡是其不断完善和发展的必然趋势。应力一般都大于其发生应力腐蚀的临界应力。使设置伸缩缝也没有意义。/SPAN>30mm的设备基础及钢结构柱脚板二次灌浆。混凝土梁柱加固角钢与混凝土之间缝隙灌浆。
CGM-2
豆石加固型 含5<混凝土的养护是不可忽视的一个重要环节。刚浇筑的混凝土、强度低、抵抗变形能力小,如遇到不利的温湿度条件,其表面容易发生有害的冷缩和干缩裂缝。保温的目的是减小混凝土表面与内部温差,防止表面裂缝的发生。无论在常温还是在负温下施工,混凝土表面都需覆盖保温层。SPAN style="FONT-FAMILY: 宋体">~10mm大骨料,适用于灌浆层厚度δ≥150mm,且灌浆长度L<1000mm设备基础二次灌浆。建筑物的梁、板、柱、基础和地坪的补强加固(修补厚度≥60mm<另据1995年前苏联有关资料统计,其工业建筑腐蚀造成的损失每年达固定资产的16%,到1998年,世界上钢筋混凝土腐蚀破坏的修复费一年要2500亿美元。我国在1960年,由于要求防冻而在混凝上中掺用过量氯盐,导致混凝土顺筋开裂、剥落,造成的构件破坏事例屡有发生。/SPAN>)。
CGM-4
**早强加固型 2小时强度达到15Mpa,适用于铁路枕轨等快速抢修,水泥混凝土路面、机场跑道等快速修补,止水堵漏快速修补。
CGM-1
通用加固型 灌浆厚度30mm<δ<150mm设备基础二次灌浆,地脚螺栓锚固,栽埋钢筋,建**载裂缝:水泥砼构件**荷载使用时,造成变形、失稳或因疲劳等原因产生裂缝。一般均发生在构件受弯矩较大的部位,成条状,但分布不象收缩裂缝那样均匀,扩展方向也相反,一般沿受力钢筋垂直方向或斜向发展。产生**载裂缝的原因,往往是施工阶段在构件上不适当地施加施工荷载或者是上部建筑过早施工。另外,温度应力影响也是原因之一。筑物梁、板、柱、基础和地坪的补强加固。
★灌浆料的包装贮运
1.产品包装以实际发水泥中掺入膨胀剂后形成了大量的钙矾石,它产生了膨胀力,能补偿由砂浆和砌体材料之间的变形差异,防止粘结面的开裂。生成的钙矾石填于砂浆毛细孔或气要充分考虑原有结构的箍筋、混凝土保护层厚度以及后植钢筋的间距。混凝土基材按照开裂混凝土考虑。孔中,并能与硅酸钙凝胶交织成网状,使水泥石的组织结构更为密实,因而提高了剪切面的粘结强度。同时,水泥浆水化产生的水化硅酸钙凝胶和铝酸盐在产生化学机械粘结力的同时,堵塞了水泥石内的毛细孔通道,正是这种填充作用使得水泥石中的孔径变小,总的孔隙率减小,改善了新老材料粘结未加固的素混凝土柱的破坏过程是:荷载加至预计破坏的50%以前,试件表面没有任何明显变化,应变值随荷载增加呈线性变化;当荷载加至预计破坏的85%时,试件中部偏下部位开始出现肉眼可见的纵向微裂缝.随着荷载的增加,裂缝逐渐增长、变宽,裂缝处混凝土上下错开,试件丧失承载能力,相同的是钢筋混凝土对比柱,在试件设计中考虑加固效果,柱的纵向配筋率为0.126%<0.5%,因此破坏过程与素混凝土基本相同.当荷载加至预计破坏荷载素混凝土柱的破坏情况的85%以后,裂缝急速增长、贯通,混凝土表皮快速脱落,混凝土在破坏瞬间向外胀,试件表面间隔粘贴碳纤维的破坏过程是:荷载加至预计破坏荷载之前,试件的变化与未加固柱接近.当加荷**过预计破坏荷载时,在试件中间部位的碳纤维间隔处,混凝土出现裂缝,随着压应变的增加,裂缝越过碳纤维布相互贯通,外层混凝土剥落,柱中间部位碳纤维被拉断,核心部分的混凝土在纵向裂缝之间被压坏。界面处的孔隙结构,从而提高了粘结界面的粘结强度,提高了结构的抗渗性能,改善了粘结面的长期粘结性能。膨胀剂的掺量一般为水泥重量的4~12%掺量太小,膨胀量不足,起不到作用;掺量太高,膨胀率提高,而粘结强度会有所下降,且会导致粘结界面发生破坏。货为准,此图片仅为参考。
2.包装规格:50kg/袋,存放在通风干燥处并防为保证质量,须将模板清理干净,不得有油污、水渍等妨碍油漆涂刷的污渍,并且梁底模应平整,不得破损开裂。止阳光直射。
3.灌浆料的保质期裂缝搾制的理论研究是随者科学计算水平的提高和试验技术的完善而逐步发展的。早在十九世多各国科学家就从结构材料强度理论的角度出发,探索混凝土开裂的基本原理,较.甲-的唯象理论建立在简単基本试验的基础上,在物质単性,连续的假定前提下推导出材料强度的各种计算公式,后期又引进了塑性理论,为解决实际问题提供了理论依掘,随者对材料徽观结构的认识,又提出了混凝土结构的构造理论和分子强度理论,但这西方面的研究还远没成热。相比之下,热力学计算理论在计算混凝士结构内部由-子水化热引起的温度变化中得到了较好的应用。为6个月,**出保质期应复检合格后方可使用 。
★灌浆料的特点
(为了防止大体积承台混凝土的开裂,通过在混凝土结构内部埋设冷却水管和测温点,通过冷却水循环,降低混凝土内部温度,减小内表温差,控制混凝土内外温差小于25℃,通过测温点测量,掌握内部各测点温度变化,以便及时调整冷却水的流量,控制温差。在开始浇筑确时即通冷水,连续通水15天,水压可根据天气和水化热情况适当调整,应将出水口水温尽量控制在40℃以下。1) 高韧性 可化解由动设备传递来的可能使水泥基灌浆层爆裂的动荷载。(2) 灌浆料的耐腐蚀 可承受酸、碱、盐、油脂等化学按照《混凝土结构后锚固技术规程》“附录A 锚固承载力现场检验方法”对化学植筋的实际抗拔力进行抽样检验。由此可以看出,混凝土早期自收缩大,特别是从浇筑开始的ld内,自收缩增幅很快,这一特点必然导致混凝土内部缺陷增多,从而造成强度损失及耐久性降低。重视混凝土的早期自收缩,进一步研究补偿方法及抑制措施,防止收缩裂缝的产生,是提高混凝土综合性能,更好地满足工程实践的一个十分重要的问题。品长期接触腐蚀。(3) 抗蠕变 -40℃至+80℃冻融交替、振动受压的恶劣物理工况下长期使用无塑性变形。
(4) 无收缩 确保灌浆层较终成型后与承载面完全接触,保证设备安装的高精确度。
(5) 灌浆料的高强早强 具有优于水泥基材料的抗压、粘结等力学性能,更高的早期强度。