灌浆料采用硅酸盐水泥和铝酸盐水泥及二水石膏复合配制水泥基无收缩灌浆材料,研究各组成材料对其各项性能的影响。试验结果表明,所配制的灌浆料具有早强、高强、微膨胀、大流动性,1d、3d、28d强度分别为33.3MPa、49.7MPa、78.1MPa,1d竖向膨胀率为0.031%。铝酸盐水泥CA-50,**二水石膏。
灌浆料集料:资阳产河砂(中砂)。外加剂:萘系高效减水剂;**硅消泡剂;葡萄糖酸钠、酒石酸缓凝剂。灌浆料凝结时间砂浆凝结时间采用贯入阻力法按GB/T50080《普通混凝土拌合物性能试验方法标准》规定进行,净浆凝结时间按照GB/T1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》中的凝结时间测定方法进行。1.2.2流动度流动度试验按GB5微裂缝是所有混凝土结构都具有的,它的存在是正常的现象。它量然对混凝_十结构的变形、强度有影响,但在设计规范中就已经考虑到微裂缝对混凝土强度和抗裂性能的影响,对具体的结构不需另加研究。但微裂缝的存在,结构受力作用时,就会发展成宏观裂缝。其基本过程是原始粘结裂缝的逐渐扩大和新的粘结裂缝的出现,产生少量穿越砂浆的裂缝,穿越砂浆的裂缝发展较快,并出现局部穿越骨料的裂缝,各种裂缝迅速发展井逐渐贯通,形成贯穿裂缝。0119-2003《混凝土外加剂应用技术规范》附录A进行,其中截锥形圆模的尺寸改为:高度(60±0.5)mm,上口内径(70±0.5)mm,下口外径120mm。每次称取不少于2000g的灌浆砂浆。1.2.3抗压强度抗压强度试验按GB/T17671-1999《水泥胶砂强度检验方法》进行,灌浆砂浆的拌合按6.1.3进行,将拌合好的灌浆砂浆倒入试模,不振动。1.2.4竖向膨胀率竖向膨胀率按GB50119-2003。
灌浆料铝酸盐水泥掺量/%凝结时间/min初凝时间终凝时间,<据统计,我国每年建筑用钢量占钢材消耗总量的50%以上,如果能够将目前使用的钢筋提高一个等级,可以获得良好的经济效益和社会效益。经济效益:推广应用高强钢筋可以节约钢筋用量,降国内对于纤维类复合材料加固修补方面进行了一系列的研究,可以概括为:关于复合材料加画混凝土梁的抗弯、抗剪性能的研究,对纤维加固受弯构件进行了研究,指出用纤维加固后的构件的承载力能够得到很大程度的提高,并提出了受弯承载力计算公式,对侧面及外包U形碳纤维加固钢筋混凝土梁受剪破坏进行了研究,给出了剪跨范围内质量控翩要求:严格按照加固施工图纸及《混凝土结构加固技术规范}CECS25—90规定执行: 拆除临时固定设施后,用小锤轻击粘结钢材,从声音判断粘结效果。如加固区粘结面积小于90%。非加固区粘结面积小于70%,则枯结无效应剥下重新粘结;做好粘结试件,送检测部门进行检测。碳纤维布有效应变沿梁纵向的分布规律。低工程成本,获得巨大的经济效益。根据测算,如果能够按照规范的要求,将钢筋混凝土结构的主导受力钢筋强度提高到400~500N/mm2,则可在目前用钢量的水平上节约10%左右。/span>硅酸盐水泥因为无机亚硝酸盐阻锈剂在环保方面的问题,80年代以来**阻锈剂得到很大发展,特别值得关注的是含有各种胺(amines)和醇胺(alcoholamine)以及它们的盐与其它**和无机物的复合阻锈剂。美国Cortec公司开发的**产品如氨基羧酸盐(amino.earboxylatebased)率我国对于FRP加固技术的应用起步较晩,1997年从国外引进CFRP加固修复混凝土结构技术,在结构工程领域引起广泛关注和浓厚兴趣,不少高等学技和科研院所进行了相关的基础理论研究,并由此开始了相关的研究。1998年开始在试点工程中应用,使这一技术自然电位法通过测定钢筋电极对参比电极的相对电位差来判明钢筋的锈蚀状况。自然电位法设备简单、价格便宜、操作方便,对混凝土中的钢筋腐蚀体系无干扰,实验室与现场检测均可采用。自然电位法现场检测根据实际情况可采用单电极法或双电极电位梯度法,前者适用于钢筋端头外露的构件,后者适用于无钢筋外露的构件。自然电位法的缺点是:只能从热力学角度定性判断钢筋发生锈蚀的可能性,不能应用于定量测量;混凝土干燥或表面有非导电性覆盖层时,因不能形成回路而不宜采用自然电位法;钢筋电极电位受环境相对湿度、水泥品种、水灰比、保护层厚度、氯离子含量、碳化深度等因素的影响较大,因此这种评定方法比较粗糙。不过如果能够充分考虑各种因素对电极电位的影响并建立可靠的标准,采用自然电位法与其它检测方法相结合对钢筋锈蚀进行检测,可以获得较好的效果。得到推广,在一些重大工程如人民大会堂、民族文化宫等的加固改造,都应用了FRP加固技术,其良好的修复加固和改造翻新数果得到广泛肯定。在消化、吸收和借鉴国外研究成果的基础上,通过自己的试验和分析,现已对很多问题取得较为深入的认识,建立了适合我国实际的设计计算方法,并于2003年颁布了国内**本技术标准?碳纤维片材加固混凝土结构技术规程?(CFiCS145:200(以下简称?加固规程?),2007年又对这一规程部分条文进行了修订,颁布了?碳纤维片材加固混凝土结构技术规程?(2007版)。先将气相缓蚀剂与根据我国**厚墙体混凝土结构施工经验,为防止产生温度裂缝,应着重在控制混凝土温升、延缓混凝土降温速率、减少混凝土收缩、提高混凝土极限拉伸值、改善约东和完善构造设计等方面釆取措施。另外,在**厚墙体混凝土结构施工过程中的温度监测亦十分重要,它可使有关人员及时了解混凝土结构内部温度变化情况,必要时可临时采取事先考虑的有效措施,以防止混凝土结构产生温度裂缝。上述这些措施不是孤立的,而是相互联系,相互制约的,必须结合实际全面考虑合理釆用,才能收到防止有害裂缝的效果。其它**阻锈剂复合用于保护钢筋混凝土。由于这类阻锈剂对三种加固方式(单纯胶粘、单纯螺栓锚固、胶粘和螺栓复合加固)加固的钢筋混凝土梁分别进行了试验研究,分析表明:以上三种加固方法均能满足现行范的强度标准。具有在混凝土的孔隙中通过气相和液相扩散到钢筋表面形成吸附膜从而产生阻锈作用的特点,他们将这种阻锈剂命名为迁移型阻锈剂MCI(migratingc范颖芳以受腐蚀钢筋混凝土构件表面裂缝的分形维数作为其腐蚀程度的定量衡量指标,建立了分形维数作为腐蚀指标的构件极限承载力的神经网络预测模型。将结构的耐久性分为恶化程度和恶化速度两项评定,利用Saatyl.9比率标度法将*根据主观经验所得的判断信息进行客观、科学地量化,采用熵的性质,使多指标评定体系的固有信息与*经验判断量化的主观信息相结合,并以灰色关联度为准则对结构进行多层次评定,得到结构的恶化程度和恶化速度,最后采用结构恶化程度随时间变化的指数关系得到结构的剩余寿命。orrosioninhibitor)。-铝酸盐水泥复合体系凝结时间试验表明,硅酸盐水泥和铝酸盐水泥直接混合使用时,铝酸盐水泥掺量在70%以下时,凝结迅速,而无法正常使用为验证各种设计公式的可靠性,对其计算精度做一个直观的分析,结合国内已有文献中关于空心板抗弯加固的试验数据进行分析。根据本文列出的纤维复合材料抗弯加固的计算公式,分别计算各加固试验板的正截面受弯承载力。通过比较不同公式的计算结果,验证各类加以下几个方面还有待于进一步的研究:植筋及群筋在潮湿环境、低温环境下以及有特定防火要求下的植筋粘结性能的研究。固计算公式的合理性以及计算结果的安全性。。其原因在于:铝酸盐水泥是低碱度水泥,普通硅酸盐水泥是高碱度水泥,两种碱度不同的水泥复合后,改变了水泥的水化反应的历程,而使灌浆料其凝结行为加速或延缓。对于普通硅酸盐水泥与铝酸盐水泥复合凝结时间的缩短,不少学者都给出了解释。袁润章在《胶凝材料学》中解释快凝的原因为硅酸盐水泥中的石膏和硅酸三钙水化所析出的氢氧化钙(Ca(OH)2)均能加速铝酸盐水泥的凝结,而且铝酸盐水泥的水化产物CAH10和C2AH8以及AH3凝胶遇氢氧化钙(Ca(OH)2)立即转变成C3AH6。另一方面,硅酸盐水泥中石膏被铝酸盐水泥消耗后,就不足以起应有的缓凝作用;同时,硅酸三钙的水化又由于氢氧化钙(Ca(O目前国内外研究的纤维加强混凝土材料属于高性能混凝土,主要有玻璃纤维、钢纤维、合成纤维等,其中聚丙烯纤维的研究较多,在研究方法上主要涉及纤维含量和长度等与混凝土抗拉复合砂浆层裂缝,对比试件复合砂浆面层除了底部和中部有随着对材料微观结构的认识,又提出了混凝上结构的构造理论和分子强度理论,但这西方面的研究还远未成熟。相比之下,热力学计算理论在计算混凝土结构内部由于水化热引起的温度变化中得到了较好的应用。在计算得到温度场的基础上建立合适的力学模型,求解结构的温度应力,进面决定是否需采取控制描施,这种方法在设什和施工过程中得到了普适认可。对于边界条件比较简单的情况国内外不少学者从热传导基本方程出发,推导了混凝土结构温度场和应力场的理论解。并综合试验情况,归纳成计算表格,大大方便了使用。细微裂缝以外基本上没有裂缝产生,与试验中复合砂浆面层发生整体剥离破坏现象基本符合;但是植筋试件产生裂缝较多,裂缝分布主要在植筋位置附近和底部,这与试验中销钉位置复合砂浆发生局压破坏和砂浆层出现竖向裂缝现象一致。和抗压强度、抗渗性、抗折强度、抗冻性和韧度的关系,而对加入纤维后钢筋混凝土中混凝土碳混凝土构件表面的处理要根据现场情况而定。一要看混凝土是新的还是旧的。若是新的,要消除表面的碱性和减少水分。水泥的性质决定了其表面常带有碱性,而碱性的存在对其胶接强度不利,因此应进行去碱处理。不过若在60d之后,其表面趋于中性了,可不予处理。另外,混凝土表面水分含量越小越有利于获得较高胶接强度,一般要求湿度6%以下。另一个是要清除其表面的疏松表层,使之露出混凝土基体,并使表面平整。如过于凸凹不平,则需将高处铲平而凹处用高标号水泥补平,以保证胶接时的胶接强度。对于已经出现钢筋外露的构件,则用一种高强修补胶将其补平覆盖。在涂胶前,再用铁刷清除残渣。化和钢筋腐蚀的影响较少涉及。本章讨论了不同掺量杜拉纤维和改性聚丙烯纤维对钢筋混凝土力学性能、碳化和钢筋腐蚀的影响。H)2)被用掉而得到加速。因此这两种水泥的水化产物会剧烈地相互作用,反应非常迅速。
灌浆料切尔宁的观点,由于氧化钙(CaO)与氧化铝(Al2O3)能立即起反应,而硅酸盐水泥一旦与水接触就会产生过饱和的CaO溶液,所以铝酸盐水泥与硅酸盐水泥的混合物就会快凝。2.1.2铝酸盐水泥对灌浆料流动度和强度的影响水胶比0.32,胶砂比1/1,分别以5.00%、10%、15%、20%的铝酸盐水泥等量取代硅酸盐水泥,铝酸盐水泥对灌浆料流动度和强度的影响见图2,图3从图2中可以看出,随着铝对于混凝土结构的耐久性问题,现有的共识是,混凝土结构耐久性的具体含义体现在结构在可预见的环境中,在预定的目混凝土中钢筋抗腐蚀性能,电化学方法测半电池电位和钢筋的腐蚀失重都是较好的验证指标,一般来说,半电池电位越小,钢筋腐蚀失重越小,混凝土中钢筋的抗腐蚀性越好,这两个验证指标的测量也比较方便。因此,半电池电位和钢筋的腐蚀失重作为正交设计中的控制指标,研究各复配的单一阻锈剂成分对混凝土中钢筋抗腐蚀性的影响规律,选用四因素三水平正交实验。标使用期内不会出现不可接受的性能劣化,即需花费大量资金加固处理而能保证其安全适用性。将其定文为与时间有关的结构多种功能的多维空间问题,所以难以单纯地采用一种或几种功能函数来全面描述结构的耐久性。由于混凝土材料的原生缺陷,使得混凝土结构在使用过程中,由于环境因素的作用,其宏观性能不断劣化,由此产生结构的耐久性问题。酸盐水泥掺量的增加.
灌浆料的初始流混凝土的宏观裂缝是肉眼可见的,宽度在0.05毫米以上,是微观裂缝扩展的结果。通常是因混凝土发生体积变化时受到约束,或因受到荷载作用时,在混凝土内引起过大拉应力(或拉应变)而产生裂缝。然而,即使没有外部菏载作用,或者即使混凝土发生体积变化时没有受到外Z部的约束,混凝土内部已经有了微裂缝,但是这些微裂缝在不大的外力或变形作用下.是稳定的;当外力或变形作用较大时,这些黏结面上微裂缝就会发展;当外力或变形作用更大时,微裂缝就会扩展穿过硬化后的水泥石,逐渐发展成可见的宏观裂缝。按裂缝成因有荷载裂缝、变形裂缝、施工裂缝、碱骨料反应裂针孔以及表面损伤对环氧涂层钢筋在含氯混凝土中腐蚀行为的影响,研究结果表明,环氧涂层钢筋表面损伤的影响比针孔更为重要。Erdo誊du等人川研究了表面损伤为1%和2%以及完好的环氧涂层钢筋在含氯离子环境中的腐蚀行为。结果表明,经过2年的浸泡,完好的环氧涂层钢混凝土施工期间间接裂缝的发生、发展及修复处理均同时与材料、施工、结构及构造、管理等多方面综合相关。以上各种因素的影响集中体现在旅工阶段。对于施工期间主要因间接作用引起的混凝土裂缝在近几年才受到关注。筋在混凝土结构中表现出良好的耐腐蚀性。然而存在1%和2%表面损伤的环氧涂层钢筋虽然发生了腐蚀,但并没有导致混凝土保护层的破裂和剥落。钢筋表面环氧涂层的缺陷对于环氧涂层防腐蚀保护作用的影响是十分重要的。因此,研究环氧涂层发生一定的机械损伤时,环氧涂层钢筋在混由于植筋深度的增加,抗拔承载力有明显的提高。对于不同的砂浆强度等级M2.5、M5和M10,植筋深度为8d相对于植筋深度5d的拉拔力分别提高了47.7%,30%和65.0%;植筋深度为10d相对与植筋深度为8d的拉拔力分别提高了47.1%,对比质量的持续损失,砂浆的强度由于未水化水泥的继续水化在早期会出现暂时的增加。当因酸性侵蚀而造成的砂浆强度损失速率**过因水泥继续水化强度增加速率时,就表现为砂浆强度的下降。水泥用量较多,灰砂比大的砂浆在相同侵蚀龄期时强度损失率较小,所以在其他参数都相同的前提下,适当增加水泥用量能够延缓砂浆(或混凝土)的性能劣化速率。这可能是由于水泥用量大,水泥水化产物中碱性物质含量(CaO)高,能够大量消耗侵入基体内部的酸根离子,使得宏观强度变化率较小。29.1%和2.O%,在砂浆强度等级为M10时提高并不多,主要原因是普通砖强度的离散性较大,对拉拔力有一定的影响。从上述数据可知,植筋深度是影响抗拔力的主要因素。凝土中的腐蚀行为及本质机理是非常必要的腐蚀行为,以及环氧涂层的表面损伤对环氧涂层钢筋的腐蚀行为的影响,并结合其他腐蚀电化学测量,对环氧涂层钢筋的腐蚀机理进行讨论。缝。动度有所增大,但不显着。这是由于铝酸盐水泥带正电荷易吸附带负电荷的减水剂;硅酸盐带负电荷,稍后于铝酸盐吸附减水剂。30min流动度随铝酸盐水泥掺,铝对于冠梁及挡土板混凝土开裂,钢筋起限制和约束的作用。钢筋对混凝土的限制约束,主要通过它们之间胶结力和摩擦力的作用。间距均匀的钢筋所提供的约束作用是较佳的,且能有效防止裂缝宽度在个别处增大。但从日常的施工检查情况看,由于钢筋绑扎得不牢固,造成混凝土振捣后,钢筋分布的偏位现象比较普遍,从而削弱了钢筋的约束作用。酸盐水泥为保证混凝土不开裂必须降低混凝土热膨胀系数,混凝土的热膨胀系数越小,温度变形越小,产生的温度应力越小,混凝土的抗裂能力越高。而要降低混凝土的热膨胀系数,必须降低粗骨料的热膨胀系数。也就是说基础大面积混凝土旌工中,为避免大面积混凝土开裂的可能性,必须选择热膨胀系数比较低的骨料,如石灰岩、玄武岩、辉绿岩、花岗岩等。试验也表明,混凝土的热膨胀系数是决定混凝土降温过程中的拉伸应力参数之一,如果其它都保持不变,骨料类型的选择能减少热膨胀系数一倍多。掺量锈蚀钢筋力学性能试验是在钢筋的锈蚀率测定试验完成以后进行的。钢筋试件的选取一方面是根据钢筋的锈蚀率,一方面根据钢筋在板中的位置。试件取自板内受力相对较小处,主要取自板的两端,当纯弯段已经接近破坏时,这部分钢筋仍处于弹性变化阶段,其变形是可恢复的弹性变形,不影响钢筋锈蚀率的计算。试验总共选取了18根钢筋试样,钢筋试件的测量标距取10d(d为钢筋直径),验前在钢筋上打上间距为20舢的记号,用来测量钢筋的伸长率。钢筋的屈服强度和极限强度用100kN普通**试验机测定,所有钢筋的拉伸试验采用相同的加荷速率,钢筋的屈服点是钢筋拉伸试验中的下屈服点,亦即较低屈服强度。对灌浆料流动性的影响综合考虑铝酸盐水泥掺量美国Arizona大学的Char和Saadatmanesh等(199首先对矩形试验梁(尺寸为:4750mmX205mrnX455mm,混凝土抗圧.强度为35MPa)采大跨PC箱梁桥有着广阔的应用前景,预计在未来的十年内会有很快的发展。自二十世纪八十年代末以来,梁式桥在我国迅速发展,呈现出一片大好形式。诸如1997年5月竣工的虎门大桥辅航道桥主跨270m,曾经为世界较大跨径的梁桥之一,主跨也已经达到了250m的重庆黄花园大桥于1999年建成通车。由不完全统计数据可知,在**己建成跨径大于240m的PC梁桥l7座,有7座位于我国境内。用反拱法用GFRP板进行加固,加固梁的抗弯强度比未加固业提高了4倍以上。然后又对FRP板加固混凝士T型大梁(梁全高1375mm翼缘2110mmX205mm,腹板610mmX1170mm)进行了参数分析,包括复合材料的横截面积和类型以及预应力大小。分析表明,预应力加固可以提高混凝土梁的极限承载力,提高幅度由破坏类型和预应力大小而定。在对一混凝土桥梁进行GFRP板和CFRP板加固设计时,采用该方法均可使原桥承载从HS15提高到HS20。对灌浆料凝结时间、流动度、强度的影响,其掺量应不**过10%。2.2二水石膏对灌浆料性能的影响灌浆料采用硅酸盐水泥、铝酸盐水泥、二水石膏为主要胶凝材料,同时固定硅酸盐水泥与铝酸盐水泥的掺加量(其在大面积混凝土温度裂缝计算中,可将混凝土的收缩值,换算成相当于引起同样温度变形所需要的温度值,即“收缩当量温差”,以便按温差计算混凝土的应力。实践证明,由混凝土收缩变形引起的温度应力是不可忽视的。此外,影响混凝土收缩的因素很多,主要是水泥品种和混合材、混凝土的配合成时间的控制。现场采用连续拌浆的方式,拌浆组保证水泥浆自拌和至压入孔道的间隔时间不大于40min。确保在20min内完成对较长孔道的连续压浆。如**时,停止压浆,注压力水将水泥浆冲洗干净,处理以后再重新压浆。分、化学外加剂以及施工工艺特(别是养护条件)等。中铝酸盐水泥占硅酸盐水泥的10%),二水石膏掺量分别为硅酸盐水泥的0~20%。灌浆料复合体系中加入二水石膏,初凝时间如图4所示,随着二水石膏的掺入对灌浆料有一定缓凝作用,当**过4.00%时,缓凝作用有所削弱。其原因主要是由于二水石膏具有溶解快的特点,能很快溶出并参与反应,在水化初期较快较多的提供了SO42-迅速与复合体系中水化活术规范》附录C进行,将拌合好的灌浆砂浆倒入试模后,2h盖玻璃板安装千分表读初始值。外贴钢板加固框架梁承载力有较大的提高,可满足《建筑抗震设计规范》(GB50011-2001)的抗震要求,若加固方案合理,可以用于7度抗震地区。粘钢与原钢筋混凝土结构整体工作系数φ在0175~110之间。混凝土等级对粘钢加固效果影响较大,混凝土强度不低于C15。赣州灌浆料施工|江西灌浆料厂家直销。