在太阳能光伏电站设计中,电池阵列的布置非常重要。阵列间的距离对电站的输出功率和转换效率有较大的影响,如安装不妥,后排的太阳光将被**遮挡。与阵列间距密切相关的是太阳高度角,因此本文中提出了两种计算太阳高度角的方法,并对结果进行比较
太阳高度角是指对于地球上的某个地点太阳光的入射方向和地平面之间的夹角。太阳高度角是决定地球表面获得太阳热能多少的重要因素。
4.1.1影子倍率法计算太阳高度角
一般在水平面垂直竖立的高为L的木杆,其南北方向影子的长度为Ls,太阳的高度角为h,方位角为α,那么影子的倍率R可由下式表示:
R = LS/L= ctgh·cosα ( 1)
式中: R为影子倍率;L为阵列高度;Ls为影子长度;h为太阳高度角;α为太阳方位角。
阵列的影子长度因安装场所的维度、季节、时间不同而异,如果在影子长的冬至,从午前9:00至午后15: 00,影子对阵列没有影响,说明太阳电池输出功率不受影响。通过“冬至太阳位置图”可以知道这段时间内的太阳高度角h和方位角α。
4.1.2根据函数计算太阳高度角
根据球面三角函数分析认为太阳高度与观测者的地理纬度、太阳赤纬和方位角有着一定关系,它们之间的关系式为:
sinh = sinφ·sinδ + cosφ·cosδ·cosα ( 2)
式中: φ———当地纬度角;
δ———当地赤纬角。
一年中*n 天的赤纬角δ按如下公式计算:
δ= 23. 45·sin[360·(284 + n)/365] ( 3)
式( 2) ( 3) 中,若已知某点的地理位置,日期和时刻,就可以算出当地当时的太阳高度角。正午时,太阳方位角为零,则cosα= 1,式( 2)变为
sinh = sinφ·sinδ + cosδ·cosδ =cos(φ-δ) = sin[90°-( φ-δ)]( 4)
得出计算太阳高度角的基本公式:
h=90°-(φ-δ) ( 5)
4.2 阵列间距的计算
4.2.1 利用4.1.1中方法计算间距
由公式( 1) 可以得出:
LS = L·ctgh·cosα (6)
h 与α根据当地纬度可以查出,Ls即可求出。
4.2.2利用4.1.1 中方法计算间距
由图15可以知道太阳高度角与电池阵列之间的关系,由几何图形分析可得:
(L-e)/Ls= tgh = tg[90°- ( φ-δ) ] (7)
Ls = ( L - e) ·ctgh= ( L-e)·ctg[90°-(φ-δ)] ( 8)
由公式( 8) 可知,太阳高度角h 越小,其投影距离L 越大。所以设计采用小的入射角即冬至日太阳高度角进行阵列间距的计算可以满足要求。
根据德国的统计数据,在一个大型太阳能发电站项目中,建安成本占光伏项目总投资的21%左右,而太阳能光伏支架的投资仅占总成本的3%左右。因此,相对于太阳能电站高额的投资,支架成本的波动并不是敏感因素,选择高端支架的成本仅提高不足 1%,然而如果选用的支架不合适,后期养护成本会大大增加,整体考虑并不合算。
任何类型的太阳能光伏组件装配部件,重要的特征之一是耐候性。需保证25年内结构必须牢固可靠,能承受如环境侵蚀,风、雪荷载和其它外部效应。安全可靠的安装,以小的安装成本达到的使用效果、几乎免维护、可靠的维修、可回收,这些都是做选择方案时所需要考虑的重要因素。目**些支架企业应用了高耐磨材料以抵抗风力雪荷载和其它腐蚀作用,综合利用了铝合金阳极氧化,**厚热镀锌,不锈钢,抗UV老化等技术工艺来保证阳能支架和太阳能跟踪的使用寿命。
1光伏支架常见形式
光伏支架具有多种分类方式,如按照连接方式分为焊接式和组装式,按照安装结构分为固定式和逐日式,按照安装地点分为地面式和屋面式等。无论哪种光伏系统,其支架构成大体相似,都包括连接件、立柱、龙骨、横梁、辅助件等部分。
1.1固定式光伏支架
固定式光伏支架,顾名思义,是指安装之后方位、角度等保持不变的支架系统。固定安装方式直接将太阳能光伏组件朝向低纬度地区放置(与地面成一定的角度),以串并联的方式组成太阳能光伏阵列,从而达到太阳能光伏发电的目的。其固定方式有多种,如地面固定方式就有桩基法(直接埋入法)、混凝土块配重法、预埋法、地锚法等,屋面固定方式随屋面材料不同而有不同的方案。
合理的光伏支架形式能够提升系统抗风抗雪载的能力,合理运用光伏支架系统在承载方面的特性,可以进一步对其尺寸参数做优化,节约材料,为光伏系统进一步降低成本做出贡献。
光伏组件支架基础上作用的荷载主要有:支架及光伏组件自重(恒荷载)、风荷载、雪荷载、温度荷载及地震荷载。其中起控制作用的主要是风荷载,因此基础设计应保证风荷载作用下基础的稳定,在风荷载作用下,基础有可能出现拔起、断裂等破坏现象,基础设计应能保证在此作用力下不出现破坏。
以下我们来了解地面光伏支架基础与平面屋顶光伏支架基础的类型都有哪些以及它们都有什么特征。合理的光伏支架形式能够提升系统抗风抗雪载的能力,合理运用光伏支架系统在承载方面的特性,可以进一步对其尺寸参数做优化,节约材料,为光伏系统进一步降低成本做出贡献。
光伏组件支架基础上作用的荷载主要有:支架及光伏组件自重(恒荷载)、风荷载、雪荷载、温度荷载及地震荷载。其中起控制作用的主要是风荷载,因此基础设计应保证风荷载作用下基础的稳定,在风荷载作用下,基础有可能出现拔起、断裂等破坏现象,基础设计应能保证在此作用力下不出现破坏。
以下我们来了解地面光伏支架基础与平面屋顶光伏支架基础的类型都有哪些以及它们都有什么特征。
太阳能支架是光伏电站非常重要的组成部分,它承载着光伏电站的发电主体,如果设计不合理,在灾害气候下发生事故,对于电站的影响是致命的。所以在设计过程中,需要综合考虑各方面的因素,终确定支架的选型及阵列的布置。
优点:独立及条形混凝土基础采用配筋扩展式基础,施工方式简单,地质适应性强,基础埋置深度可相对较浅。
缺点:独立及条形混凝土基础工程量大,所需人工多,土方开挖及回填量大,施工周期长,对环境的破坏大。
预制混凝土空心柱基础
预制混凝土空心柱基础广泛用于水光互补电站、滩涂地电站等地质条件较差的电站。同时由于基础高度优势,也被较多用于山地电站以及农光互补电站。
角弛型轻钢屋顶和直立锁边型轻钢屋顶主要通过夹具作为连接件,将导轨固定在屋面上,而梯型轻钢屋顶需要采用自攻螺栓将连接件固定在屋面。
不管哪一种屋面形式,在选择连接件时一定要进行实地测量“角弛”“直立边”“梯形”尺寸,确保连接件和屋面匹配,而在梯型轻钢屋顶支架安装时还要做好防水措施,避免螺栓钻孔处发生漏水。
3、固定倾角可调式
固定倾角可调式是指在太阳入射角变化转折点,定期调节固定式支架倾角,增加太阳光直射吸收,在成本略增加情况下提高发电量。