合金元素对钢的机械性能的影响
提高钢的强度是加入合金元素的主要目的之一。欲提高强度, 就要设法位错运动的阻力。金属中的强化机制主要有固溶强化、位错强化、细晶强化、*二相(沉淀和弥散)强化。合金元素的强化作用, 正是利用了这些强化机制。
1. 对退火状态下钢的机械性能的影响
结构钢在退火状态下的基本相是铁素体和碳化物。合金元素溶于铁素体中, 形成合金铁素体, 依靠固溶强化作用, 提高强度和硬度, 但同时降低塑性和韧性。
2.对退火状态下钢的机械性能的影响
由于合金元素的加入降低了共析点的碳含量、使C曲线右移, 从而使组织中的珠光体的比例, 使珠光体层片距离减小, 这也使钢的强度增加, 塑性下降。但是在退火状态下, 合金钢没有很大的优越性。
由于过冷奥氏体稳定性, 合金钢在正火状态下可得到层片距离更小的珠光体, 或贝氏体甚至马氏体组织, 从而强度大为增加。Mn、Cr、Cu的强化作用较大, 而Si、Al、V、Mo等在一般含量(例如一般结构钢的实际含量)下影响很小。
3. 对淬火、回火状态下钢的机械性能的影响
合金元素对淬火、回火状态下钢的强化作用显著, 因为它充分利用了全部的四种强化机制。淬火时形成马氏体, 回火时析出碳化物, 造成强烈的*二相强化,同时使韧性大大改善, 故获得马氏体并对其回火是钢的经济和有效的综合强化方法。
合金元素加入钢中, 首要的目的是提高钢的淬透性, 保证在淬火时容易获得马氏体。其次是提高钢的回火稳定性, 使马氏体的保持到较高温度,使淬火钢在回火时析出的碳化物更细小、均匀和稳定。这样, 在同样条件下, 合金钢比碳钢具有更高的强度。
为减少Q345B钢板边部气泡缺陷,改善现状,经分析研究后,制定了以下措施:
5.1 加强转炉终点出钢控制。严加关注转炉出钢碳的含量,杜绝出钢终期出现下渣现象,并根据出钢C含量的不同加入不等量的脱氧剂。具体脱氧方案如表4所示。
5.2 加强合金管理。严加管控合金的运输过程,提高合金现场存放期间的管理水平,启用合金烘烤装置,保证入炉合金干燥无潮湿。
5.3 优化精炼过程。精炼过程造好渣、造白渣,保证精炼炉渣流动性良好,确保白渣稳定时间≥20分钟,保证软吹时间≥8min,确保钢液中的夹杂物及气泡能够充分上浮。
5.4 严加关注钢包烘烤情况。加强全新备用钢包的烘烤管理,确保每次投入使用前的烘烤时间及烘烤温度满足生产工艺要求。
5.5 加强连铸过程保护浇注的控制。确保钢包浸入式长水口垂直无偏斜,确保中包液面始终保持黑面无露红,确保保温覆盖剂的加入次序。
5.6 定期抽检水分化验。定期抽检合金、中包覆盖剂及保护渣等物料的水份含量,一经发现水份**过工艺要求则立即采取有效控制措施或停用问题批次物料。
6 结论
6.1 边部气泡原因定论
通过分析发现,造成Q345B钢板边部气泡缺陷主要为转炉冶炼终点过氧化、出钢脱氧剂加入不足、全新备用钢包烘烤不良、出钢过程加入的合金受潮、高性能中包覆盖剂水份含量过多等原因所致。
6.2 结果
综合以上实验结果,通过加强对转炉冶炼终点及出钢过程的控制、加强合金存放及运输环节的管理、保证全新备用钢包的烘烤效果以及连铸过程保护浇注的控制,Q345B钢板边部气泡缺陷改善显著,缺陷比例从早期的0.616%降低至目前的0.07%,下降比例达0.609%。
合金调质钢的终热处理是淬火加高温回火(调质处理)。合金调质钢淬透性较高,一般都用油,淬透性特别大时甚至可以空冷,这能减少热处理缺陷。
合金调质钢的终性能决定于回火温度。一般采用500℃-650℃回火。通过选择回火温度,可以获得所要求的性能。为防止第二类回火脆性,回火后快冷(水冷或油冷),有利于韧性的提高。
合金调质钢常规热处理后的组织是回火索氏体。对于表面要求耐磨的零件(如齿轮、主轴),再进行感应加热表面淬火及低温回火,表面组织为回火马氏体。表面硬度可达55HRC~58HRC。
合金调质钢淬透调质后的屈服强度约为800MPa, 冲击韧性在800kJ/m2心部硬度可达22HRC~25HRC。若截面尺寸大而未淬透时,性能显著降低。
Q345B 钢的工艺路线:铁水→LD(100t **底复吹转炉)→LF(100t 精炼炉)→CCM(1600×180、220、250mm 2 板坯连铸机)。
气泡产生的原因
依据气泡所在的位置,将露出表面的称之为表面气泡,未露出表面的称之为皮下气泡。前者在未经清理的铸坯表面即可观察到,而后者只有在对铸坯表面进行火焰清理之后才可观察到。
中板厂轧材边部的气泡缺陷可分为两类:类气泡实际为皮下夹渣,主要与结晶器保护渣的卷入有关;一般零星出现的气泡缺陷有可能是此类原因导致的。第二类气泡缺陷主要是由钢水中的气体引起的;在钢水凝固过程中,钢液中所溶解的气体的分力大于钢水自身的静压力与大气压之和时就会产生气泡,若这些气泡不能从钢水中及时逸出,钢水凝固形成铸坯后就会造成皮下气泡缺陷。因我厂的Q345B生产过程中多表现为整炉出现气泡,而类气泡属零星出现,所以可排除类气泡,断定Q345B钢铸坯气泡为钢水中气体含量过高所致。
由于气体含量过高导致的板材气泡缺陷根源在于铸坯在浇注过程中已形成的宏观气泡,连铸过程铸坯产生气泡的主要原因有3 类:脱氧不良、过程吸气(空气、保护性气体)及水汽(潮湿的添加料和耐材),而炼钢工序出现上诉3种情况主要体现为终点状况差、强脱氧剂加入不足、钢水二次氧化、加入料潮湿、钢包等功能性耐材预准备使用把关不严等诸多环节问题均可归属于上述气泡产生的3大类原因之中。